Partitioning of limiting protein and energy in the growing pig: testing quantitative rules against experimental data.

نویسندگان

  • Fredrik B Sandberg
  • Gerry C Emmans
  • Ilias Kyriazakis
چکیده

Literature solutions to the problem of protein and energy partitioning in the growing pig are quantitatively examined. Possible effects of live weight, genotype and food composition on the marginal response in protein retention to protein and energy intakes, on protein and energy-limiting foods are quantified. No evidence was found that the marginal response in protein retention to ideal protein supply, when protein intake is limiting, is affected by live weight, genotype or environmental temperature. There was good evidence that live weight does not affect the marginal response in protein retention to energy intake when protein intake is not limiting. Limited data for different genotypes suggested no effects on this response. A general quantitative partitioning rule is proposed that has two key parameters; e(p)* (the maximum marginal efficiency for retaining the first limiting amino acid) and R* (the maximum value of R, the energy to protein ratio of the food, MJ metabolisable energy (ME)/kg digestible crude protein (DCP), when e(p)* is just achieved). When R<R* the material efficiency of using ideal protein is (e(p)*/R*) x R. The value of e(p)* was determined to be 0.763 (SE 0.0130). There was no good experimental evidence that e(p)* is different for different amino acids. The best estimate of R* was 67.9 (SE 1.65) MJ ME/kg DCP. Live weight, genotype and temperature did not affect the values of either parameter. A more general understanding of partitioning, including the effects of 'stressors' such as disease, may be achieved by using the preferred rule as a starting point.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Partitioning of limiting protein and energy in the growing pig: description of the problem, possible rules and their qualitative evaluation.

A core part of any animal growth model is how it predicts the partitioning of dietary protein and energy to protein and lipid retention for different genotypes at different degrees of maturity. Rules of partitioning need to be combined with protein and energy systems to make predictions. The animal needs describing in relation to its genotype, live weight and, possibly, body composition. Some e...

متن کامل

Application of Sinusoidal Equations to Partitioning Crude Protein and Metabolizable Energy Intake between Maintenance and Growth in Parent Stock of Broiler Chickens

Most models developed for poultry are linear to the point where genetic potential is reached. Models reliant on the premise that growth rate determines requirements based on some fixed rate of nutrient utilization do not adequately represent the biological phenomena involved. Therefore, a dichotomy between the accepted theories of nutrient utilization in animals and the assumptions of mathemati...

متن کامل

Design and Evaluation of a Method for Partitioning and Offloading Web-based Applications in Mobile Systems with Bandwidth Constraints

Computation offloading is known to be among the effective solutions of running heavy applications on smart mobile devices. However, irregular changes of a mobile data rate have direct impacts on code partitioning when offloading is in progress. It is believed that once a rate-adaptive partitioning performed, the replication of such substantial processes due to bandwidth fluctuation can be avoid...

متن کامل

A New Thermodynamic Approach for Protein Partitioning in Reverse Micellar Solution

Reverse micellar systems are nanofluids with unique properties that make them attractive in high selectivity separation processes, especially for biological compounds. Understanding the phase behavior and thermodynamic properties of these nanosystems is the first step in process design. Separation of components by these nanosystems is performed upon contact of aqueous and reverse micellar phase...

متن کامل

Immunogenicity of a New Recombinant IpaC from Shigella dysenteriae Type I in Guinea Pig as a Vaccine Candidate

Background: Recombinant vaccine technology is one of the most developed means in controlling infectious diseases. However, an effective vaccine against Shigella is still missing. Objective: To evaluate recombinant IpaC protein of Shigella as a vaccine candidate. Methods: In this study we cloned IpaC gene into an expression vector in prokaryotic system. The protein expression was evaluated by SD...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The British journal of nutrition

دوره 93 2  شماره 

صفحات  -

تاریخ انتشار 2005